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Abstract: The widespread adoption of Electric vehicles (EVs) is largely attributed to their eco-friendly and cost-effective attributes. As
the number of EVs charging on electrical distribution systems is expected to rise, it is essential to consider the potential effects on the
infrastructure, including generation capacity, transformer overloading levels, line congestion, and load profiles, with the impact of EV
charging on load profiles being the most pressing concern, Consequently, developing accurate models and predicts of EV charging
demand is crucial. This paper presents a methodology for analyzing the load demand of load profiles due to EV battery charging. A
comparative study is carried out by simulating three EV charging scenarios, uncontrolled charging, controlled off-peak charging, and
smart charging. The proposed method considers the initial state of charge and start time of EV battery charging. Results show that a
10% market penetration of EVs in the studied system would result in increase in peak demand by up to 17.3% for an uncontrolled
charging scenario is a worst-case to the system and may cause congestion issues to the local network. A controlled off-peak charging
scenario can shift the EV charging load to an off-peak time; therefore, the EV can be introduced to a new peak or near-peak in early
off-peak time. Smart charging method which optimizes the start time of EV charging is the most beneficial charging method to

distribution network operators and EV users.

Index Terms: electric vehicles, load model, electrical distribution system, battery charging.

1. INTRODUCTION

The effort to roll out EVs is a new phenomenon as the world
races to reduce greenhouse gas emissions from the transport
sector to help tackle the climate crisis. That is why it is not so
popular in developing countries like Cambodia, where many
people are accustomed to driving vehicles that run on fuel or
gasoline.

Multiple studies have shown that automobile exhaust
emissions are responsible for most urban air pollution [1]. It is
worth noting that PM2.5 is particularly problematic, and
according to statistics, automobile exhaust emissions account for
a substantial 31.1% of local PM2.5 emissions, making them the
largest contributor [2]. By 2018, China’s reliance on imported
crude oil had grown to 70.9% and is projected to rise even higher
to approximately 75% by 2030, which could have significant
implications for China’s energy security [3].
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With so many EVs being connected to power systems to
charge their batteries, the charging demand can significantly
increase the peak demand on the utility distribution system.
Although it is desired that EV battery charging loads can be
contained during system off-peak hours without affecting peak
demand, the charging behaviors of various EV users have an
element of randomness.

Several studies have already been carried out to predict the
overall effect of EVs on power systems. MJ Rutherford, V
Yousefzadeh, et al [4] investigated the impact of EV battery
chargers on the distribution transformer life expectancy. The
results show that power management of the EV battery charging
profile can help manage the loss of life of the distribution
transformer. However, the dynamics of large-scale EVs in urban
road networks will concurrently affect the integration of
transportation systems and power grids, necessitating a
coordinated approach to their management [5]. The interaction
between resident trip rules, urban road network structure, and



charging facility distribution has significant implications for
vehicle driving distribution and charging decision-making. In
contrast, the characteristics of vehicle batteries, driving paths
taken, and energy supply modes have substantial consequences
on the traffic network’s unobstructed degree and power grid
operation state [6], [7]. Therefore, in the study in Asia [8], a large
amount of EV plug-in grid will cause overload, voltage deviation
issues, harmonic distortion, etc, which affect the regular
operation of the power grid and may cause congestion in the
entire power grid. Preeti Khasa et al [9] developed a Simulink
model for synchronized charging and discharging of EVs to the
distribution grid and for V2G and G2V applications, with this
work, charging of vehicles will be faster due to the discharging
of EV batteries to the grid, and the charging price will be
reduced. Hence, oversimplifications were adopted in the EV
battery charging characteristics work by modeling the charging
load as a piecewise constant function.

The research aims to quantify the influence of the
introduction of electric vehicles on the power system load
profile, taking into account real-world factors such as EV battery
charging characteristics, user behavior, and actual power system
operation data of:

The EV charging load profile with the inclusion of time,
size, and the shape of the load curve

The EV charging load model

The EV charging scenarios.

The remainder of the paper is organized as follows: In
section 2, the Modeling fo EV charging demand is described. In
section 3, we study system the effects of EV charging scenarios
on two seasonal load profiles. In section 4, the Datasets have
been inserted into the three scenarios as result. Finally, section 5
concludes this paper with a summary of our findings.

2. ELECTRIC VEHICLE CHARGING DEMAND MODEL

As the transportation carrier, the distribution of travel rules
of EVs directly affects the driving decision and charging
requirement. Accordingly, it is significant to utilize the existing
data to mine the trip rule of urban residents in modeling
reasonably and predicting EV charging demand.

A. Electric vehicle composition by users

Figure 1 shows a statistical analysis of the proportion of
various car user groups within the Cambodian car market,
according to the Ministry of Public Works and Transport,
covering 31 years from 1990 to 2021 and comprising
approximately 920,000 registered vehicles. Around 49% of cars
are privately owned and used for commuting, and 21% are
service transportation owned and used for business, a other trip
30% [15]. This paper assumes that the same characteristics of
car user groups hold for EV owners in Cambodia.
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= Commuting Evs, 49% Business Evs, 21% Other, 30

Fig.1. Proportion of various car user groups
B. Composition of electric vehicle battery types

In the United States, the US Advanced Battery Consortium
(USABC) has played a key role in driving the development of
advanced batteries for electric vehicles (EVs) and hybrid electric
vehicles (HEVs). Focusing on cobalt, nickel-metal hydride
(NiMH), and lithium-ion batteries, USABC’s efforts have
sought to improve battery performance and efficiency. The
advantages of these technologies, including their high-
performance capacity, reliability, safety features, and cost-
effectiveness, have led to their widespread adoption in both EVs
and HEVs. In recognition of the rapid progress being made in
EV battery technology research, we have made sure to account
for the latest developments. This paper assumes that EV batteries
consist of 60% lithium-ion batteries, 30% cobalt batteries, and
10% NiMH batteries [10], Most of today’s EVs and HEVs use
lithium-ion batteries, which are the rechargeable batteries used
in electric vehicles with higher energy density.

C. Electric vehicle charging start time

==@==Commuting Business
60%
50%
=S
S 40%
©
]
S 30%
o
p—
& 20%
L
£ 10% <
1S
= o
0%
12345678 9101112131415161718192021222324

Day time, h
Fig.2. Commuting and business trips distribution

The start time of battery charging, determined by the
purpose of the use of the EVs and by the tariff structure, has an
element of randomness. Figure 4 illustrates the daily traffic flow
in Phnom Penh, showing the proportion of vehicles used for
commuting and business purposes by time of day. Notably, two



distinct peaks emerge, corresponding to the morning (06:00 am-
08:00 am) and evening (16:00-18:00) hours [14]. The type of trip
purpose will dictate when Electric vehicles (EVs) become
available for recharging. Furthermore, the analysis will be
provided in the proceeding section of the paper, i.e., the
probability density function of recharging start time: f1(t), f2(t).

D. State of Charge (SOC) of EV batteries before charging

The amount of electrical power required to support EV
charging depends on various stochastic variables, including the
time of day charging occurs and the battery’s starting charge
level at that time. Vehicles are assumed to recharge at distinction
amperage rates, influenced by their initial battery state of charge.
Therefore, the distribution of initial SOC Eini can be considered
to have a probability density function h(E), where E is the SOC,
and its value varies from fully discharged to fully charged
capacity of the battery.

Initial State of Charge before charging (Eini): To model the
power demand of electric vehicle battery charging over time, we
need to analyze the statistical distribution of vehicle state-of-
charge levels during a recharge cycle. This is based on general
knowledge about travel patterns of private and company vehicles
[15]. probability distribution of daily distance driven is
developed in this paper. Figure 3 shows for private vehicle
travel. It is found in general, the distribution of lognormal type,
with zero probability of occurrence of all negative distance, and
a “tail” extending to infinity for positive distance. where d is the
daily distance in kilometers (km) driven by a vehicle.
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Fig. 3. Probability density of daily distance driven for private
vehicle travel.

The probability density function for vehicle travel
concerning distance demonstrated by Fig. 3 can be using the
equation:

(Ind-p)?,
g(diwo) = —e w2 o))
where d is the daily distance driven by a vehicle, [ is the
mean, and o is the standard deviation of the probability function.
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According to the JICA transportation survey data [15], for
private vehicles, the mean of the distribution is 20.5 km and the
standard deviation is 11.5 km. In contrast, the mean daily
mileage for business vehicles is 30.5 km and the standard
deviation is 17.3 km.

populations, specifically those EV owners who use their
vehicles for commute and those who use them for business
purposes. The privately owned EVs used for commuting
charging behaviors can be divided into two categories, every
five-day charging and every one-week charging. In the case of
business EVs, every five days recharging is assumed to be
necessary. Given the average daily travel distance, the SOC at
the beginning of a recharge cycle (residual battery capacity) can
be estimated using (2), assuming that the SOC of an EV drops
linearly with the distance of travel:

Egi = (1—5%) x100% @)
R

Where Eini represents the initial SOC of an EV battery, d is
the daily distance traveled by a vehicle, which is a stochastic
variable subjected to a lognormal distribution, o is the number
of days that the EV has traveled since the last charge, dR is the
maximum range that EV can travel. 465 km is the typical range
value for the lithium-ion (LFP) battery-powered BYD Han EV
and 405 km is the typical range value for the lithium-ion (CATL)
battery-powered Toyota bz4X [12], [13]. Fig. 4 shows the
probability distribution of the initial battery state of charge after
five days and one-week travel for privately owned and business-
owned EVs. Separately, this is plotted from the probability
density function h for the initial battery SOC given by equation
(3), which is derived from equation (1) and (2):
[1n(1—E)—(u—1n(‘fTR))]2

1
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Fig. 4. Probability density function of the initial battery SOC for
lithium-ion (CATL) based on Toyota bZ4X

This model considers the effect of the interval in the number
of days between the recharge of an EV battery and the initial
SOC. The initial SOC has a mean of 50% for private vehicles



after five days of travel, 30% after one week, and 25% for
business vehicles after five days of travel.

E. Electric vehicle battery charging characteristics

The leading contenders in the electric vehicle (EV) battery
market have been cobalt, lithium-ion, and Nickel Metal Hydride
(NiMH), which offer a unique combination of attributes,
including high performance, reliability, long lifespan, and cost-
effectiveness [10]. This paper uses two types of EVs —the BYD
Han EV and the Toyota bZ4X —based on lithium-ion phosphate
(LFP) and Contemporary Amperex Technology Co., Limited
(CATL) lithium-ion batteries [11]. respectively, have been
chosen as examples to examine the influence of battery charging
load on the distribution system load profile, the widespread
availability of data, and their prominent market share, these two
EV batteries are suitable examples for this analysis. Figures 5
and 6 show the power demand and associated battery state of
charge profile for the two battery types, correspondingly [12],
[13]. The two types of batteries have the same capacity, despite
differences in the duration of their charging processes and
charging characteristics, i.e., the lithium-ion (LFP) based on
BYD Han EV has a nominal capacity of 84.5 kWh whereas the
lithium-ion (CATL) Toyota bZ4X has 71.4 kWh when fully
charged from a fully discharged state.

In order to determine the load demand due to EVs, it is
crucial to evaluate at any instant “t” in time the charging demand
by an individual EV. To facilitate numerical calculations, the
power demand P during the battery charging process is
discretized with its discrite values Pi taken in half-minutely
intervals from the curves shown in Figures 5 and 6. The
corresponding power levels of charging load is therefore

expressed as:
P, = w,ias anindex =123,..n. (4)
where nc is the number of half-minutely intervals in the
battery charging profile, i.e., nc is 11 half-minute intervals for
the lithium-ion (CALT) battery, as it takes 74 minutes for this
type of battery to be fully charged from a fully discharged state,
and nc = 10 for the lithium-ion (LFP) type.
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Fig. 5. Charging profile of the BYD Han EV battery (lithium-
ion LFP)
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Fig. 6. Charging profile of the Toyota bZ4X battery (lithium-ion
CATL)

In order to determine the load demand due to EVs, it is
crucial to evaluate at any instant “t” in time the charging demand
by an individual EV. To facilitate numerical calculations, the
power demand P during the battery charging process is
discretized with its discrite values Pi taken in half-minutely
intervals from the curves shown in Figures 5 and 6. The
corresponding power levels of charging load is therefore

expressed as:

P, = PUZDARPGRD) o6 an index = 1,23, .. ne (4)

where nc is the number of half-minutely intervals in the
battery charging profile, i.e., nc is 11 half-minute intervals for
the lithium-ion (CALT) battery, as it takes 74 minutes for this
type of battery to be fully charged from a fully discharged state,
and nc = 10 for the lithium-ion (LFP) type.

The probability of a battery charging load operating at
power level Pi at time instant t can be represented as ®(Pi,t),
where @ is the probability density function, 1<t < 24. If the EV
battery starts recharging at time instant k (k < t), then the
charging load at time instant K is P;_(;_y,s, assuming as initial
battery SOC E;_(;_x). Assuming that the charging start time and
battery initial SOC are two independent variables, the
probability of a battery starting charging at the time instant k (k
<t,1<k<24)and operating at power level Pi at time instant t
can be mathematically expressed as:

O(Pi,t) = Yi=q fUe) h (Ei(e-1)) ®)

where f(k) is the probability of charging started at time
instant k (k < t), while h(E;__y,) is the probability of an initial
battery SOC being at power level P;_(_x). From (5), the
expected value (mean) p(P) and standard deviation o(P) at any
time instant t can be calculated, equation (6) shows the
mathematical expectation of the charging load at time instant t
for an individual battery:

u(P) = X%, PO(P;, t) (6)
3. STUDIED SYSTEM
In this paper, we study the system load profile during one year,

and consider the various start times for charging EV batteries of
the three charging scenarios.



A. Example system

In this paper, The Electrical Du Cambodia (EDC) will
conduct an in-depth study to examine the effects of EV battery
charging on the Phnom Penh power grid’s load profile. Figure 7
shows the seasonal load profile in Phnom Penh which has a
greater load demand during the summer, while a much lower
load during the rainy season. EVs will be considered for a greater
proportion of the total load in the rainy than in the summer.
Moreover, EV charging load will result in greater peak demand
in summer and may exceed the line capacity under some
circumstances, for instance, uncontrolled charging load during
peak load time.
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Fig. 7. Load profile in Phnom Penh

Only the impacts of EV charging load on the summer load
profile are studied. It was ascertained that to base the electricity
demand on the day of the month over the summer could be
misleading so the highest working day of the year 5th June 2024
was selected. Selecting the power demand for a particular day
can be justified because the charging scenario model is not an
average value, but rather a possible scenario that can help
determine the maximum level of EV penetration that can be
integrated into the grid during peak periods.

In this paper, the total vehicle number and base load demand
at present level (2024) is assumed as basis for consideration of
the impact of EV charging load for the studied system. The
vehicle number of the sample system is also assumed to be
proportional (0.01%) to that of the Phnom Penh city, i.e., there
are 2,968 cars in the sample system (there are 920,000 registered
cars in the Phnom Penh city at present).

B. Scenarios

A set of charging scenarios is proposed, taking into account
various start times for charging EV batteries. It is anticipated that
the electricity tariff structure will have a significant impact on
EV charging habits. According to the Electricity Authority of

4 6 8 10 12 14 16 18 20 22 24
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Cambodia (EAC) [16], table 1 shows the electricity tariff, Riel
per kWh, and the fixed electricity rate purchased during the year
was fixed as 610 Riels/kWh, in Phnom Penh city.

Electricity
Cgéi%ﬂze?f Tariff, Condition
Riels/lkWh
All kwh if monthly
610 consumption < 50
L kWh
Domestic in Phnom All KWh if monthly
Penh and Takmao .
720 consumption < 200
Town of Kandal
Province KWh
All kWh if monthly
820 consumption > 200
kWh

Table 1. Tariff of EDC for Phnom Penh city
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Fig. 8. Electricity tariff structure

In this paper, three types of typical electricity tariff structure
are given consideration: fixed electricity rate, time-of-use
electricity rate, and real-time electricity rate. The fixed
electricity rate refers to the tariff in which energy charge per
kWh remains constant regardless of the time of use. Time-of-use
electricity price divides the tariff into two main blocks: off-peak
and on-peak price. The real-time price, i.e., the electricity rate
per KWh varies by time of day and month of year as shown in
Figure 8, is based on the wholesale price in the U.K. in winter in
2008 [17]. These ignore any capital recovery or standing charge
element to the tariff structure.

Uncontrolled charging

In the uncontrolled charging scenario, a 10% penetration
rate of EVs was considered. To account for the variability in
plug-in times, which is caused by factors like departure and
arrival times, road conditions, and other factors, three groups of
charging would occur. Business vehicles would likely start
charging earlier, assuming they would be recharged at the
workplace. Nevertheless, some business vehicles may need to
charge later due to the diver working extended hours or being
stuck in traffic returning to the workplace. Business vehicles



would recharge at 5 pm, 5: 30 pm, and 6 pm. Private vehicles
would also recharge in the three groups from 5:30 pm, 6 pm, and
6:30 pm. In this worst-case scenario, EVs are not motivated to
avoid peak-time charging, so a fixed electricity tariff is
implemented, consequently, a uniform probability density
function f1 (t) of recharging start time is employed, shown in

(7):
f@®) = {1.08: i = clzfly other time (I=t=24. (@)

The total charging power load at instant t can be calculated
using (7) incorporating the appropriate battery charging profile
and initial battery SOC probability density function as presented
as (3).

Controlled off-peak charging

In this scenario, a peak-off-peak electricity pricing scheme
is implemented to influence EV charging patterns, by providing
a lower rate for charging during off-peak hours, which
incentivizes EV owners to charge their vehicles at these times.
In this paper, the off-peak time is defined as from 9 pm to 6 am,
and peak load time is defined as 7 am to 8 pm. This scenario
assumes that Electrical Du Cambodia (EDC) has adopted to
lower electricity prices in the off-peak times, to identify the
moment when battery charging should be initiated. Therefore, it
is assumed that both private and business vehicles would
recharge in the three times categories at 9 pm, 9:30 pm, and 10
pm. Private EVs are assumed to charge at, while business EVs
are assumed to charge at the workplace. A uniform discrete
distribution f2 (t) for EV off-peak charging is employed in order
to consider the effect of Time-of-use (TOU) electricity rate on
battery recharging start time. Since EV batteries should be fully
charged at the end of the off-peak load time, the charging start
time can be expressed as:
AO =07 12 anyother cime L1520 ©

The total charging power load, at instant t, in this scenario
can be calculated based on the distribution of recharge start time,
as defined by (8) and the distribution of battery initial SOC
defined by (3).

Smart charging

In this scenario, it is assumed that a real-time electricity
tariff structure applies to optimize EV charging behaviors. The
distribution of the battery recharging start time is determined by
traffic data and real-time electricity rate data. by comparing the
reciprocal of the product of distribution of the vehicle's traffic
pattern and the real-time electricity rates shown in Figure 2 and
Figure 8, respectively, it can be found that the resultant
distribution of charging start time is intervals from 11 pm to 1
am. Since EVs should be fully charged before 7 am for
commuting, lithium-ion batteries require charging from the fully
discharged to the fully charged period of roughly nine hours
from a wall connector charger (level 1). it is assumed that EVs
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are charged from 10 pm, 10:30 pm, and 11 pm, by an initial SOC
of more or less 10%. A distribution is therefore employed to
depict the probability density function of battery recharging start
time.

The probability density function can be obtained by:

[l 0) = o e Cm/@e) ©)

where  is the mean, indicating the location of maximum
probability density, o is the standard deviation, and x is the total
EV battery charged be x;, x5, ... x, att = 1,2 ... t,,, individually,
then Y7, x, = 100%. Let the total battery charging load be
Y1, Y2, - Yn &Lt = 1,2 ... t,, individually. Assume the system
demand excluding the EV battery charging load is
P 1, Py, ... P, at t =1,2...t,, individually. After adding the
charging load of EV batteries, the modified load will change to,
P+ 44, Py + 4y, ... Py + 4. The mathematical modeling of
smart charging therefore becomes an optimization problem of
which the aim is to minimize the charging cost, as expressed in
(10):

min (X¥=q ¢ - %) (10)

with constraint of x; + x, + -+ x, =100%,0 < x, <1

where ct is the real-time electricity rate, in USD/KWh, xt is
the percentage of total EV charged and ¢t represents the battery
charging load at time instant t, individually. ¢t is a function of
xt and the battery charging characteristics. Due to the linearity
of the objective function, equality constraints, and inequality
constraints, the optimization of smart charging in (10) is a
typical linear programming problem.

4. RESULTS AND DISCUSSION

To consider future changes to electricity tariffs and the
regulation of EV load, three EV charging scenarios have been
developed in this paper: uncontrolled charging, controlled off-
peak, and smart charging. we assumed that to use the normalized
electricity price per unit of electricity tariff structure as an
example.

Uncontrolled charging

Figure 9 shows the load profile in summer with EV battery
charging loads for every five days of charging and every one
week of charging, individually.

It can be observed that on the studied summer day, the
electricity demand peaked at 1,390 MW at 3 pm and reduced to
1,336 MW at 4 pm. At 5 pm the original demand was 1,251 MW
but due to the business vehicles beginning recharging, it reached
1,376 MW and decreased to 1,272 MW at 6 pm and did not
reduce to below 1,300 MW until 8:30 pm when the original
demand was reduced to 1,223 MW. Results in Figure 9 show
that every five days of charging of EVs results in an increase of
17.3% on the summer peak load, while every  one week
charging results in an increase of 9% in the peak load. Results
also show that charging every one week requires a longer time
than charging every five days.



Results show that with 10% EV penetrations, there will be
a daily peak increase in power demand of 17.3%, for the scenario
of uncontrolled charging. Such a significant increase in peak
electricity demand will significantly impact the distribution
feeder with respect to capacity limit. This suggests the need to
devise and provide proper incentives to achieve distributed
charging load during off-peak times, even at low levels of EV
penetration.

2,000

Load profile without EVs charging
load

Power demand, MW
J—‘
o
o
o
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Time of day

Fig. 9. Load profile with EVs battery charging
(uncontrolled charging)
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Fig. 10. Load profile with battery charging load (Controlled off-
peak charging)

Controlled off-peak charging

It appears from Figures 10 that in this scenario (Controlled
off-peak) where the uniform distribution of EV’s battery
charging start time, during the first three hours of off-peak
period, as discussed earlier is assumed, the addition of charging
load comfortably absorbed by the whole system without an
increase to peak demand. The addition appears to improve the
load factor since it helps to fill up some portions of the off-peak
valley. However, under this scenario (time-of-use electricity
rate), there is a significant increase in system load between 9 pm
and midnight. Compared to Figures 9 (Uncontrolled charging),
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the results shown in Figures 10 indicate that the EV charging
load does not form a new peak load, since the EV charging loads
will be distributed over the off-peak time.

Smart charging

The purpose of smart charging is to minimize the electricity
price of battery charging of EVs (10), under the real-time
electricity structure Figure 8. It can be observed from Figure 11
that Smart charging can provide the most efficient usage of
energy and does not form a new peak load. Results show that at
the intervals from 11 pm to 1 am, the proportion of EVs starting
charging has its largest value. From the electric utility operation
aspect, the potential of EV smart charging to fill in the valley in
the load curve will result in more electricity sales during the off-
peak load time for nearly the same system capacity. Smart
charging therefore implies more effective utilization of all
equipment in the system.

2,000
=1,500
g' / -
So00 |~/ N
S
S
3 500 Load profile without EVs charging load
o
Load profile with EVs charging load
(every 1 week)

0 2 4 6 8 10 12 14 16 18 20 22 24
Time of day

Fig. 11. Load profile with battery charging load (Smart
charging)

5. CONCLUSIONS AND DISCUSSION

This paper develops a methodology to determine a
distribution system's EV battery charging load. Three scenarios
were simulated: uncontrolled charging, controlled off-peak
charging, and smart charging. The proposed method in this paper
considered for the initial state-of-charge and the stochastic in
batteries charging start time. The paper comes to the following
conclusions.

A 10% market EV penetration in the studied system would
result in every interval 5-day peak increase in power demand of
17.3%, for the scenario of uncontrolled charging is the worst
case in terms of peak power demand. Other scenarios are less
challenging: controlled off-peak, for example, increases



electricity consumption throughout the night but has no impact
on the daily peak load.

The distribution of start time for EV battery charging has a
significant impact on the overall power consumption for
charging. The optimized Smart charging method, which adjusts
the timing and number of batteries charging at each interval is
the most significant advantages to both EV customers and the
distribution network operator. Despite the potential benefits of
charging EVs during peak hours, it will also introduce a new
peak or near-peak load on the power system. Furthermore,
charging EVs during the early off-peak period may also bring
about a new peak or near-peak demand, which would require
careful consideration and planning to mitigate any negative
impacts.

To ensure a comprehensive assessment of the impacts of EV
battery charging on the feeder load profile, it is necessary to
divide the overall load into three categories: industrial,
commercial, and residential, as this enables to identification of
potential overloading of individual feeders. The significant
loading impact on the local system might be masked if an overall
load profile is adopted.
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